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Abstract The problem of coupled heat and mass transfer by natural convection from a vertical,
semu-infinite flat plate embedded in a porous medium in the presence of an external magnetic field
and internal heat generation or absorption effects is formulated. The plate surface is maintained
at either constant temperature or constant heat flux and is permeable to allow for possible fluid
wall suction or blowing. The resulting governing equations arve non-dimensionalized and
transformed using a non-similavity transformation and then solved numerically by an implicit,
iterative, finite-difference scheme. Comparisons with previously published work are performed
and excellent agreement is obtained. Useful correlations containing the various physical
parameters for both isothermal and isoflux wall conditions are reported. A parametric study of all
mwolved parameters is conducted and a representative set of numerical vesults for the velocity,
temperature and concentration profiles as well as the skin-friction parameter, Nussell number,
and the Sherwood number is illustrated graphically to show typical trends of the solutions.

Nomenclature
A = inverse Darcy number F = inertia coefficient of the porous
B = inertia coefficient parameter medium
B, = magnetic field strength f = dimensionless stream function
C = concentration at any point in the g = gravitational acceleration
field H = magnetic dissipation parameter
Co = concentration at the wall for h = local convective heat transfer
(UWT) _ coefficient
Coo = concentration at the free stream h = average convective heat transfer
Cw = concentration at the wall for (UHF) coefficient
Cwo = reference concentration for (UHF) hy, = local mass transfer coefficient
c = dimensionless concentration at any  hy, = average mass transfer coefficient
point K = permeability of the porous medium
Co = dimensionless concentration at the k. = effective thermal conductivity of
wall for (UWT) the porous medium
Cp = specific heat of the ambient fluid L = characteristic length of the plate
D = mass diffusivity Le = Lewis number ) _
Ec = Eckert number M = square of the Hartmann number Inﬁgﬁg‘gfﬁgﬁzsk”?ﬁ‘fg’;ﬁfjl
e = buoyancy ratio Nu = local Nusselt number Vol. 10 No. 5, 2000, pp. 455-476.

© MCB University Press, 0961-5539



HFF
10,5

456

Nupvg = average Nusselt number Y = distance normal to the plate
Pr = Prandtl number y = dimensionless distance normal to
Q = internal heat generation or the plate

absorption coefficient
Qo = dimensionless heat transfer at the

wall for (UHF)
do = heat flux at the wall for (UHF) Greek symbols
R = dimensionless temperature e = effective thermal diffusivity of the
R, = dimensionless temperature at the porous medium

wall for (UWT) Be = concentration expansion coefficient
Shy = local Sherwood number Bt = thermal expansion coefficient
Shayg = average Sherwood number S = transformed concentration
T = temperature at any point n = coordinate transformation in terms
T, = wall temperature for (UWT) of x and y
U = tangential velocity 5 = porosity of the porous medium
UHF = uniform wall heat flux 10} = internal heat generation or
UWT = uniform wall temperature absorption parameter
u = dimensionless tangential velocity I = dynamic viscosity
\% = normal velocity v = kinematic viscosity
Vo = dimensionless blowing or injection % = stream function

velocity 0 = transformed temperature
Vo = blowing or injection velocity Tw = wall shear stress
X = distance along the plate p = fluid density
X = dimensionless distance along the o = fluid electrical conductivity

plate £ = coordinate transformation for x
Introduction

Coupled heat and mass transfer in fluid-saturated porous media finds
applications in a variety of engineering processes such as in heat exchanger
devices, insulation systems, petroleum reservoirs, magnetohydrodynamic
(MHD) accelerators and generators, filtration, chemical catalytic reactors and
processes, nuclear waste repositories and problems of soil contamination by
crude oil as that occurred in the State of Kuwait during the Gulf War. In
addition, coupled heat and mass transfer can interpret certain natural
phenomena such as ocean currents driven by differential heating and act as
freight trains for salt as mentioned by Bejan (1993), and the role of factory
waste gas diffusion in a differential heating circulated air. There has been
considerable work done on the study of flow and heat transfer in geometries
with and without porous media (for instance, Vafai and Tien (1981) and
Churchill and Chu (1975)).

The linear Darcy law which accounts for the viscous affects and is applied
for slow flow in porous media was used extensively in early work on porous
media. For example, the problem of natural convection in a porous medium
supported by an isothermal vertical plate was solved some time ago by Cheng
and Minkowycz (1977) using the Darcy law. It is well established now that the
Darcy law is inapplicable for high velocity flow situations for which the
relation between the pressure drop and the Darcian velocity is non-linear, and
that it does not account for the presence of a boundary at which the no-slip



condition must be satisfied. Johnson and Cheng (1978), Vafai and Tien (1981)
and Plumb and Huenefeld (1981) were the first to consider inertia and boundary
effects in porous media.

Recently, Kou and Huang (1996a, 1996b) have developed non-similar
transformations for natural convection on a vertical plate embedded in a
porous medium with prescribed wall heat flux and temperature. In addition,
some research has been carried out on electrically-conducting fluids such as
liquid metals, water and others in the presence of magnetic field on the flow
and heat transfer aspects (for example, Sparrow and Cess (1961), Gray (1979),
Michiyoshi et al. (1976), Fumizawa (1980) and Riley (1964)). The study of heat
generation or absorption effects in moving fluids is important in view of
several physical problems, such as fluids undergoing exothermic or
endothermic chemical reactions (see Vajravelu and Hadjinicolaou (1993) and
Vajravelu and Nayfeh (1992)). In addition, Kou and Lu (1993) showed that the
design of placing many electronic circuits into one small chip and more chips
into package results in high volumetric heat generation in the electronic
equipment. This led to the consideration of heat generation effects in porous
media. In addition, recently, Chamkha (1996) analyzed the problem of non-
Darcy free convection flow about a wedge and a cone embedded in a porous
media in the presence of heat generation effects.

The coupled heat and mass transfer received relatively little attention.
Trevisan and Bejan (1990) considered combined heat and mass transfer by
natural convection in a porous medium for various geometries. Bejan and Khair
(1985) reported on the natural convection boundary-layer flow in a saturated
porous medium with combined heat and mass transfer. The coupled heat and
mass buoyancy-induced inclined boundary layer in a porous medium was
studied by Jang and Chang (1988). Later, Lai and Kulacki (1991) extended the
problem of Bejan and Khair (1985) to include wall fluid injection effects. Early
studies which considered coupled heat and mass transfer without the presence
of porous media include the works of Gebhart and Pera (1971) on vertical plate,
Pera and Gebhart (1972) and Chen and Yuh (1980) on inclined plates. Recently,
Lai and Kulacki (1991) and Yih (1997) studied coupled heat and mass transfer
by mixed convection from a vertical plate embedded in a fluid-saturated porous
medium.

Problem formulation

Consider steady, laminar, hydromagnetic coupled heat and mass transfer by
natural convection flow along a semi-infinite vertical plate embedded in a fluid-
saturated porous medium as shown in Figure 1. The surface of the plate is
maintained at a constant temperature or assumed to have a constant heat flux
condition and a constant or variable concentration. The temperature and the
concentration at the plate are always greater than their uniform ambient values
existing far from the plate surface. A magnetic field of uniform strength B, is
applied in the y-direction that is normal to the plate. A constant fluid suction or
blowing is imposed at the plate surface. The fluid is assumed to be Newtonian,
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Figure 1.

Vertical plate embedded
in a fluid-saturated
porous medium
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electrically conducting, heat generating or absorbing and has constant
properties except the density in the buoyancy term of the balance of
momentum equation. Also, the porosity and the permeability of the porous
medium are assumed to be constant.

The magnetic Reynolds number is assumed to be small so that the induced
magnetic field can be neglected. In addition, there is no applied electric field and
both the Hall effect and viscous dissipation are neglected where as magnetic
dissipation is considered. Invoking the Boussinesq and boundary layer
approximations, the governing equations for this problem can be written as

ou oV
ox oy =" @
ou ou 82U
Ua_X + Va_Y 8Y2 + ﬁTg(T T ) + ﬂcg(c - Coc) (2)
UB% 2112
p U_KU Fe“U
oT oT 82T Q aBO 9
Uax TVay ~ avz t o (T - T 00U ®)

2
Ua—C Va—C = Da—C (4)
19),4 oY oY?
where U, V, T and C are the fluid x-component of velocity, y-component of
velocity, temperature, and concentration, respectively. p, v, ¢, B, and 3. are the
fluid density, kinematic viscosity, specific heat at constant pressure, coefficient
of thermal expansion, and coefficient of concentration expansion, respectively.



o, Q and D are the fluid electrical conductivity, heat generation (> 0) or
absorption (< 0) coefficient, and mass diffusivity, respectively. g and B, are the
gravitational acceleration and magnetic induction, respectively. K, F, and . are
the porous medium permeability, inertia coefficient, and effective thermal
diffusivity, respectively. T., and C,, are the ambient fluid temperature and
concentration, respectively.

Non-dimensionalization of the above equations is obtained by using

XY w v ToT
LT e Tl T e/l o
C—Cy

© T v/ (2817

(where L is a characteristic plate length) to give

ou ov
T oy 0 (6)
1/ ou ou\ el FEL, o’u  oBL?
(w2 - R 72 7
Pr(u8 +vay>+Ku+ by U +C+8y2 ot u  (7)
OR OR OR QL? oB2gBrL?
- S R o 22051~ 2
YTV Tt e T o O ®)

S e 10 o
Ox dy Leoy?

where Pr = -z and Le = % are the Prandtl number and the Lewis number,
) o
respectively. -

Isothermal wall condition
The boundary conditions in dimensional form for this case can be written as
UX,0)=0, UX,00)=0, V(X,0) = —v, (10)

T(X,0)=T,, TX,00)=Ts, CX,00=C, CX,o00)=Cx
where v,, T, and C, are constants representing the suction (> 0) or injection (< 0)
velocity and the fluid temperature and concentration at the plate, respectively.

It is convenient herein to use the following non-similarity transformations
reported earlier by Kou and Huang (1996a)

R(l)/4Y Y(x,y)
— W’ g =X, f(€7 77) = R(l)/4X3/4 ’

(11)
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Defining

C(X7 y) _ ﬁC(CO - COO)
S A S

(12)

(where e is the buoyancy ratio which is the ratio of the buoyancy forces due to
concentration change to the buoyancy forces due to temperature change) and
substituting into equations (7)-(9) yields the following non-similar equations:

f’”—i—i[%ff”—l( ) _§<f,8f f//af>:| —|—0—|—eg:(A—|—M)§l/2

Pr |4 2 0 o€ (13)
f’ - f/ 2
o e(h)
3 00 of
i °f / 1/2 _ fl / H 3/2f/2 14
0+ 10+ 00 = & 5 0/ ) — Hie (14
1, 3 L0, 0f
— —f¢ ff——d¢d— 1
oo Tl =« % ag> (15)
where a prime denotes ordinary differentiation with respect to n and
T, — Ty Co — Cxo Ve
Ro = o@D = oa/(@al?) T T Tz
(vae)/(gBrL?) (vae)/(g6:L7) Cp(TO —Ty)L
el? 9 BZLZ QLZ (16)
A=—— B=FsL, M= , O = , H=EcMR
KRY/2 pRY?T T Kk RY? ’

are the dimensionless plate temperature, wall concentration, Eckert number,
inverse Darcy number, dimensionless porous medium inertia coefficient,
square of the Hartmann number, dimensionless heat generation or absorption
coefficient (where k. is the porous medium effective thermal conductivity),
dimensionless magnetic dissipation coefficient, respectively. The transformed
boundary conditions become

MOy pe0) =1 (60 -

f6,0) =0, 3¢ (60 + 675 -1 0
f,(ga OO) - Oa 0(&7 OO) - 07 C(f, OO) -

where V, = (v,L)/(a.R,"? is the dimensionless wall mass transfer such that
V, > 0 indicates suction and V, < 0 indicates blowing or injection at plate
surface. It should be mentioned here that when all of the parameters e, Vo, M, ¢
and H are set to zero in equations (13), (14) and (17) and ignoring equation (15),
the transformed equations of Kou and Huang (1996a) are recovered.

Of special interest for this flow and heat transfer situation are the skin-
friction parameter, Nusselt number, and the Sherwood number. These are
defined as follows



SFP=— W _ ¢lA(e 0 18

OB 1

Nu = ?{X = &RV (¢,0) (19)
hyX ,

Shy = == = —€/"R/H(£,0) (20)

where 7y, u, h and hy, are the shear stress at the wall, dynamic viscosity of the
fluid, convective heat transfer coefficient and the local mass transfer coefficient,
respectively.

Constant heat flux wall condition
For this case, the appropriate boundary conditions are

_ _ . . OT(X,0)
UX.0) =0, UX,o0) =0, VX0)= v —k“g==a

T(X,00) = Too, C(X,0) =Cy(X), C(X,00) = Cx

(where q, and C,,(X) are the heat flux at the wall (a constant) and the wall
concentration which is allowed to be a function of X so as to avoid singularities
at X =0, respectively).

In their work on possible transformation for natural convection over a
vertical plate embedded in porous media for prescribed heat flux, Kou and
Huang (1996b) suggested the following transformations:

)y B(x,y)

_ _ _ R(x,y)
- X1/5 ) E—X, f(g’n)_Q(l)/SXZL/S?

Qg/5X1/5

0(&n) =

With (¢ = (C — Co)/(Cyy — o)), and using equations (22), the non-similar
equations governing this case become

" 1[4 //_§ AV /8_f/_ //8_f
f +Pr[5ff = () g(f % fa§>]+9+ec

. (23)
— 2/5¢0 | 2 pren2
(A+MEPE + &)
' Z_L /_1 ! 2/50 _ /%_ /ﬁ o 7/5412
6 +5f6 5f0+qﬁ§ 0 =¢(f % 085) H¢'Pf (24)
1 " 4 / ]‘ / 18 /a:f
— o — e = E(f = — =) (25)

e '5° 5 ot " o€
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with the concentration at the wall being in the following form

B 1/5
o= (i) = @)

for a constant e (e = Cy/ Qﬁ/ ® where Cywo 18 a reference value for concentration at
the wall. In equations (23)-(25),

Cwo — Coo VOt

Jo
o = , Cwo = 77 —ravs BC=——rmrr
Y = )/ —@ALY ™~ a0 /@Al T ol k) o
el? 132L2 QL2
< B Fe2L, M—pUQ2/5,¢—kQ§/5,H:EcMQO

are the dimensionless wall heat flux, dimensionless wall concentration, Eckert
number, inverse Darcy number, dimensionless porous medium inertia
coefficient, square of the Hartmann number, dimensionless heat generation or
absorption coefficient and the dimensionless magnetic dissipation coefficient,
respectively. The transformed forms of the boundary conditions for this case
become

4‘ 1 4 f
60 =0, st 160 + 650D =V, U6 = L s(e0) =1

f/(gaoo) =0, 0(&00) =0, ¢(§00) =0

where V, = (v, L)/ (ate/ 5) is the dimensionless wall mass transfer for this case.
Again, setting e, Vo, M, ¢, and H to zero and ignoring equation (25) produces
the transformed equations reported by Kou and Huang (1996b) for the problem
of natural convection from a vertical impermeable plate maintained at uniform
heat flux and embedded in a porous medium.
The skin friction parameter, Nusselt number and the Sherwood number for
this case take on the following forms:
Tw

SFP - W 52/5 ”(57 ) (29)
_hX s

M= =" 5 o (30)

Shy = X _ _e5Q1/5¢(¢, 0) (31)

D

The average convective heat transfer coefficient for the isothermal wall
temperature condition or the constant wall heat flux condition and the average
mass diffusion coefficient for both cases can be computed from the following:



H_fhdx A [ hpdx

T T (32)
Accordingly, Nuavg and Shavyg take on the forms
hL hmL
Nuave = L Shave = 5~ (33)

Numerical method

The resulting non-similar equations for both isothermal and isoflux thermal
cases are non-linear and must be solved numerically with iteration subject to
the corresponding boundary conditions. The implicit finite-difference method
discussed by Blottner (1970) has proven to be accurate for the solution of such
equations. The method starts with a change of variable such that V =" in order
to reduce the momentum equations (13) and (23) into second-order non-similar
equations. Then, the equations governing V, 6, and ¢ for both isothermal and
isoflux cases will have the general form

7T1Z”+7T22’+7r32+7r4:0 (34)

where Z is a typical dependent variable and the ws are functions of the
dependent and independent variables.

At the i™ stage of the iteration process, linear equations are created by
evaluating the dependent variables appearing in the 7s in equation (34) using
the last value produced by the iteration process. These equations are then
discretized using three-point variable-step difference quotients to give a set of
linear algebraic equations for each of the dependent variables of the form

Aw(Z)y s+ BolZ)y + CalZ)yy =Dy (35)

where A,, B, C, and D, are functions of the 7s and the step sizes used in the n
direction. The subscripts i and n denote the i iteration and the n point along
the 7 direction, respectively.

The non-similar equations become similar at £ = 0. Hence, the 7s will only be
functions of the dependent variables. For £ # 0, the first derivatives in £ are
discretized by using two point backward difference formulas so that the s will
be functions of the independent variables and dependent variables at the
current and previous lines of &.

Equation (35) represents a tri-diagonal set of N-2 linear algebraic equations
that are solved by the well-known Thomas algorithm. A variable step in the 7
direction is selected since rapid changes in the dependent variables are
expected near the wall. With a starting step size in the ) direction of 0.001 at the
wall and a step size growth factor of 1.03 such that An,+1 = 1.03An,, accurate
results can be obtained with minimum computational efforts. Moreover, a
constant step of 0.005 in the £ direction was selected after performing many
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Figure 2.

Effects of M on
tangential velocity
profile for (UWT)

trials to assess grid independence. The convergence criterion for this problem
required that the difference between the current and the previous iterations be
1078, Once the solutions for V, 6 and ¢ are converged, the equation V = f is
solved for f(n) by the trapezoidal rule. This solution procedure is done for the
non-similar equations obtained for both constant temperature and constant
heat flux wall conditions. A representative set of graphical results is presented
in Figures 2-11 to show the influence of the physical parameters on the
solutions. It should be noted that in the reference parametric conditions
employed to obtain the graphical results, e, H, and ¢ were set to zero. This is
done intentionally to reduce the number of figures as by doing this, the
concentration profiles will be the same as the temperature profiles.

It should be mentioned here that the above numerical method was employed
to solve the non-similar equations excluding all of the magnetic, heat
generation or absorption, and the porous media terms and ignoring the mass
diffusion equation. The results of f',  and Nu were found to be in excellent
agreement with the solution of laminar natural convection boundary layer flow
along a vertical wall with both constant wall temperature and constant wall
heat flux reported by Bejan (1993) and Sparrow (1955), respectively. These
comparisons lend confidence in the adequacy and accuracy of the numerical
method.

Useful correlations

1st — constant wall temperature condition

In this section some correlations for both Nuaye and Shpye for various
combinations of the physical parameters are reported.
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The following correlations for Nuayg and Shave as functions of Pr and
R, are suitable for Le = 0.5,0.71 <Pr<10and allof A, B,e, M, V,and ¢
are set to zero with maximum errors less than 1 per cent and 1.5 per cent,

respectively.
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Figure 3.

Effects of M on
temperature profiles for
(UWT)

Figure 4.
Effects of M on
temperature profiles for

(UHF)
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Figure 5.

Effects of M on the local
skin friction parameter
for (UWT)

Figure 6.

Effects of M on the local
Nusselt number for
(UWT)
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(b) The following correlations for Nuayg and Shavg as functions of M or A
and R, are suitable for Le = 0.5, Pr = 0.71, and all of B, e, V, and ¢ are set
to zero, 0 < A, M < 10 with maximum errors less than 4 per cent and 5
per cent, respectively.
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Figure 7.
Effects of M on the local
Nusselt number for

(UHF)

Figure 8.

Effects of ¢ on the local
skin friction parameter
for (UWT)
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Figure 9.
Effects of ¢ on the local
Nusselt number for

(UWT)
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R, are suitable for Le = 0.5, Pr =0.71,-0.1 < V,<0.5and all of A, B,e, M
and ¢ are set to zero with maximum errors less than 3.5 per cent and 3
per cent, respectively.
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Shavg = 0.4847 |V, + 0.3723(°%1% R1/4 (C6)
Note that linear correlations can be associated to the range -0.5 <V, <-0.1
with the limit values evaluated from correlations (5) and (6).

The following correlations for Nuavyg and Shayg as functions of ¢ and
R, are suitable for Le = 0.5, Pr = 0.71,-1.0 < ¢ <0.1and all of A, B, e, M
and V, are set to zero with maximum errors less than 0.5 per cent for
both correlations.
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Figure 10.

Effects of A, B, e, H, Le,
M, Pr, V, and ¢ on
average Nusselt number
for (UWT)
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Figure 11.

Effects of A, B, e, H, Le,
M, Pr, V, and ¢ on
average Nusselt number
for (UHF)
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(0.5698 + 0.0907e — 0.01158Le — 0.01559¢” + 0.000105Le?)RY/*
Shave =
AVG (C10)

0.4355 + 0.1371e + 0.1059Le — 0.0143¢% — 0.0008Le?)RY/*
0

(f) The following correlations for Nuavg and Shavyg as functions of Pr, A
and R, are suitable for 1 < A <10,0.71 < Pr <10 withe = 0.0, Le = 0.5
and all of B, M, V, and ¢ are set to zero with maximum errors less than 5
per cent and 7 per cent, respectively.

Nuavg(A,Pr)  0.8455Pr00%9 o
Nuavg(A =0.0,Pr) A03IS

Shayg(A,Pr)  0.8065Pr" %! c12)
Shayg(A =0.0,Pr) A0

2nd — constant wall heat flux condition

For the subsequent correlations which result from the solution of combined
heat and mass transfer by natural convection over a semi-infinite vertical plate
maintained at constant heat flux condition, all of the parameters A, B, e, H, Le,
M, Pr, V, and ¢ are assumed zero unless otherwise stated.

(@) The following correlations for Nuavg and Shavyg as functions of Pr and
Q, are suitable for 0.71 < Pr < 10 and Le = 0.5 with maximum errors less
than 1 per cent and 2 per cent, respectively.

Nuayg = 0.6611QY/°Pr-%16 (C13)

Shaye = 0.4638Q./°Pro-072 1)

(b) The following correlations for Nuayg and Shave as functions of M or A
for the range 0 < M, A < 10 and Q, are suitable for Pr = 0.71 with the
remaining A or M set to zero and Le = 0.5 with maximum errors less
than 3 per cent and 3.5 per cent, respectively.

0.6568 175
Nugve = W 0/ (C15)
Shve = 0.4556 15 (C16)

(1+M A)0.2014 0
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The following correlations for Nusyg and Shavg as functions of the
dimensionless wall mass transfer V,, in the range —0.1 <V, < 0.5and Q,
are suitable for Pr = 0.71 and Le = 0.5 with maximum errors less than 3
per cent and 1.5 per cent, respectively.

Nuaye = 0.8834[V,, + 0.3604/"*°Q}/° (C17)

Shave = 0.5410|V, + 0.3642*1%7Q}/° (C18)

Note that linear correlations can be associated to Nuayg and Shpyg with
limit values evaluated from correlations (17) and (18) for the range
—05<V,<-0.1.

The following correlations for Nuavg and Shavg as functions of Q, and ¢,
for the range —1.0 < ¢ < 0.1 for calculating Nuavyg and for the range
—0.7 < ¢ < 0.1 for calculating Shavg, are suitable for Pr = 0.71 and Le = 0.5
with maximum errors less than 0.2 per cent and 1 per cent, respectively.

Nuayg = 0.3174]¢ + 1.8590|*16'Q1/> (C19)

Shaye = 0.4596|¢ 4 0.8475|*19°Q1/ (C20)

The following correlations for Nuayg and Shavye as functions of e, Le
and Q, are suitable for Pr = 0.71,0 < e < 10 and 0.1 < Le < 100 but for
the calculation of the Shavg the range of Le is 1 < Le < 100 with
maximum errors less than 18 per cent and 8 per cent, respectively. The
large percentages of correlation deviations from the numerical solution
were found to appear for large values of the buoyancy ratio e especially
ase — 10.

Nuaye = (0.7239 + 0.0518e — 0.0144Le — 0.00246¢> o)
+0.000129Le?)Q/®
Shave = (0.4670 + 0.07828e + 0.1324Le — 0.002445¢?

C22
+0.0009771Le*)Q/ (€22)
The following correlations for Nuavyg and Shavg as functions of A, Pr
and Q, are suitable for e = 0.0, 1 < A <10 and 0.71 < Pr < 10 with
maximum errors about 3 per cent and 7 per cent for Nuayg and Shavg,
respectively.



Nuavg(A,Pr)  0.9113Pr%%%
Nuavg(A =0.0,Pr) ~ A01716

(C23)

Shave(A,Pr)  0.8634Pr0005%
Shayg(A =0.0,Pr) A028I

(C24)

Results and discussion

Figures 2 and 3 present representative velocity and temperature profiles at £ = 1
for various values of the square of the Hartmann number M for the case of
isothermal wall, respectively. It is a known fact that application of a transverse
magnetic field normal to the flow direction results in a flow-resistive force called
the Lorentz force which acts in the opposite direction of flow. This force has the
effect of slowing the motion of the fluid and increasing its temperature and
concentration with increases in all of the hydrodynamic, thermal, and
concentration boundary layer thicknesses. It should be noted that, for the
isothermal case, the concentration profiles are similar to the temperature profiles
when Le = 1 and ¢ = H = 0 since they are governed by similar differential
equations and boundary conditions. The thermal condition of constant wall heat
flux results in a similar trend as in the isothermal wall case except that the wall
temperature increases as the square of the Hartmann number increases as shown
by Figure 4.

Figures 5 and 6 illustrate the influence of the magnetic parameter (square of
the Hartmann number) M on the development of the local skin-friction
parameter SFP and the local Nusselt number Nu® (= NuR, %) along the
isothermal plate, respectlvely On the other hand, Figure 7 presents the local
Nusselt number Nu® (= NuQ, ) for the isoflux wall condition. As a result of
the slowing motion of the fluid caused by the presence of the Lorentz force, the
wall slope of the velocity profile decreases. This has the direct effect of
reducing the wall shear stress represented by SFP. However, the wall slope of
the temperature profile for the isothermal plate case decreases and the wall
temperature for the constant heat flux case increases as M increases. This
produces lower Nusselt number values for both cases at every point along the
plate. These behaviors are depicted by the decreases in the values of SFP, Nu®
and Nu® as M increases, displayed in Figures 5, 6 and 7, respectively. It is
worth mentioning that the definition of the magnetlc parameter M for both
cases is different. Thus, different responses in Nu® and Nu can be noticed as
M is altered. It is also observed that all of SFP, Nu®, and Nu® have an
increasing behavior with the tangential distance &. It should be mentioned that
similar to the Nusselt number, the Sherwood number decreases as M increases.

Similar to the magnetic field effect on electrically-conducting fluids, the effect
of the presence of the porous medium is to slow the motion of the fluid and to
increase its temperature and concentration. This flow resistance mechanism
increases as either of the inverse Darcy number A, the dimensionless porous
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medium inertia coefficient B, or both increase. As mentioned before, this causes
the values of SFP, Nu® and Sh” (= Sh,R, %) to decrease. In a similar manner,
the case of constant wall heat flux produces similar trends taking into account
that the Darcy number is different for both cases and the inertia coefficients are
the same. These results are not presented herein for brevity.

In general, imposition of fluid suction at the wall has a tendency to decrease
the thermal boundary layer for both studied cases. This causes the fluid
temperature profile and its slope at the wall for the (UWT) case to increase or
the wall temperature for the uniform wall heat flux (UHF) case to decrease.
This results in enhancement of the wall heat transfer represented by increases
in the Nusselt number. In addition, the values of the skin-friction parameter
SFP increase as the suction parameter increases. The same can be said for the
uniform wall heat flux.

In Figures 8 and 9, the effects of heat absorption or generation for constant
wall temperature on the skin-friction parameter and the Nusselt number are
shown. It is observed that higher values of ¢ causes higher fluid temperatures
and, therefore, higher thermal buoyancy effects. This produces higher velocity
flow along the plate. These behaviors result in higher wall velocity and
temperature slopes which produce higher SFP and lower Nul values,
respectively. These facts are clear from Figures 8 and 9. Similarly, the Nusselt
number for the uniform heat flux case exhibits similar features as the internal
heat generation or absorption parameter changes.

As expected, the increases in the values of the buoyancy ratio e cause
increases in the total buoyancy effect and, therefore, increases in the flow
induced by this effect. This is done at the expense of both the fluid temperature
and concentration. As a result of this and as explained before, the values of
SFP, Nu® and Sh™ tend to increase as e increases.

In Figure 10, a parametric study illustrating the effects of the Darcy number
A, inertia coefficient B, buoyancy ratio e, magnetic dissipation parameter H,
Prandt] number Pr, wall mass transfer parameter V, and the internal heat
generation or absorption parameter ¢ on the average Nusselt number for the
case of constant wall temperature is conducted. With fluids of high Prandtl
number, the thermal boundary layer becomes thinner and as a result an
increase in Nuayg is expected. A good agreement with the results reported by
Bejan (1993) on the buoyancy-induced flow over a vertical impermeable plate is
observed in the third figure from top of Figure 10. From previous discussion
and knowing that Nuavyg is the integral of the local Nusselt number over the
plate length, the Nuavyg decreases as either of ¢, A, B or M increases and
increases as V, or e increases. The presence of the magnetic dissipation
parameter H decreases Nuavyg since the term containing H acts as an internal
heat generation mechanism. Recalling that the Lewis number is different for
variable combination of fluid and diffused species. If the species have a higher
tendency to diffuse into the fluid, the Lewis number will be lower. Thus, as Le
decreases, Nuavyg increases. Similar qualitative trends are shown in Figure 11
for the case of uniform wall heat flux. In this case, the numerical results for



Nupvyg are validated with the integral solution of Sparrow (1955) for the
problem of natural convection over a vertical plate with constant wall heat flux
excluding the terms containing A, B, e, M, V, and ¢. The apparent discrepancy
between the present results and those of Sparrow (1955) is due to the fact that
Sparrow (1955) uses a less accurate approximate integral method than the more
accurate implicit finite-difference numerical method of the present work.

Conclusion

The problem of steady, laminar, hydromagnetic heat and mass buoyancy-
induced natural convection boundary-layer flow of an electrically-conducting
and heat generating or absorbing fluid along an isothermal or isoflux vertical
and permeable semi-infinite surface embedded in a uniform porous medium was
considered. The governing equations for both situations of uniform wall
temperature (UWT) and uniform wall heat flux (UHF) were developed and
transformed wusing appropriate non-similarity transformations. The
transformed equations were then solved numerically by an implicit, iterative,
finite-difference scheme. The obtained results for special cases of the problem
were compared with previously published work and found to be in excellent
agreement. Useful correlations for both isothermal and isoflux wall conditions
were reported for various physical parameters. It was found that while all of the
skin-friction parameter, Nusselt number and the Sherwood number decreased as
a result of the presence of either the magnetic field or the porous medium, they
increased due to imposition of fluid suction at the plate surface for both the
uniform wall temperature and the uniform wall heat flux cases. Also, the skin-
friction parameter was increased and the Nusselt number were decreased due to
the presence of heat generation effects for both cases. Furthermore, increasing
the ratio of concentration to thermal buoyancies was found to cause
enhancements in the values of the skin-friction parameter, Nusselt number and
the Sherwood number for the two studied thermal cases. It is hoped that the
present work will serve as a vehicle for understanding more complex problems
involving the various physical effects investigated in the present problem.
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